Sec61p is part of the endoplasmic reticulum-associated degradation machinery.
نویسندگان
چکیده
Endoplasmic reticulum-associated degradation (ERAD) is a cellular pathway for the disposal of misfolded secretory proteins. This process comprises recognition of the misfolded proteins followed by their retro-translocation across the ER membrane into the cytosol in which polyubiquitination and proteasomal degradation occur. A variety of data imply that the protein import channel Sec61p has a function in the ERAD process. Until now, no physical interactions between Sec61p and other essential components of the ERAD pathway could be found. Here, we establish this link by showing that Hrd3p, which is part of the Hrd-Der ubiquitin ligase complex, and other core components of the ERAD machinery physically interact with Sec61p. In addition, we study binding of misfolded CPY(*) proteins to Sec61p during the process of degradation. We show that interaction with Sec61p is maintained until the misfolded proteins are ubiquitinated on the cytosolic side of the ER. Our observations suggest that Sec61p contacts an ERAD ligase complex for further elimination of ER lumenal misfolded proteins.
منابع مشابه
Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation.
The endoplasmic reticulum contains a quality control system that subjects misfolded or unassembled secretory proteins to rapid degradation via the cytosolic ubiquitin proteasome system. This requires retrograde protein transport from the endoplasmic reticulum back to the cytosol. The Sec61 pore, the central component of the protein import channel into the endoplasmic reticulum, was identified a...
متن کاملRole of Sec61p in the ER-associated degradation of short-lived transmembrane proteins
Misfolded proteins in the endoplasmic reticulum (ER) are identified and degraded by the ER-associated degradation pathway (ERAD), a component of ER quality control. In ERAD, misfolded proteins are removed from the ER by retrotranslocation into the cytosol where they are degraded by the ubiquitin-proteasome system. The identity of the specific protein components responsible for retrotranslocatio...
متن کاملSec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation.
Degradation of misfolded secretory proteins has long been assumed to occur in the lumen of the endoplasmic reticulum (ER). Recent evidence, however, suggests that such proteins are instead degraded by proteasomes in the cytosol, although it remains unclear how the proteins are transported out of the ER. Here we provide the first genetic evidence that Sec61p, the pore-forming subunit of the prot...
متن کاملDistinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein.
The folding and assembly of proteins in the endoplasmic reticulum (ER) lumen and membrane are monitored by ER quality control. Misfolded or unassembled proteins are retained in the ER and, if they cannot fold or assemble correctly, ultimately undergo ER-associated degradation (ERAD) mediated by the ubiquitin-proteasome system. Whereas luminal and integral membrane ERAD substrates both require t...
متن کاملCholera Toxin Is Exported from Microsomes by the Sec61p Complex
After endocytosis cholera toxin is transported to the endoplasmic reticulum (ER), from where its A1 subunit (CTA1) is assumed to be transferred to the cytosol by an as-yet unknown mechanism. Here, export of CTA1 from the ER to the cytosol was investigated in a cell-free assay using either microsomes loaded with CTA1 by in vitro translation or reconstituted microsomes containing CTA1 purified fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 28 19 شماره
صفحات -
تاریخ انتشار 2009